

Ассоциация участников технологических кружков

УТВЕРЖДАЮ Президент Ассоциации
А.И. Федосеев
Дополнительная общеразвивающая образовательная программа
«Введение в киберфизическое приборостроение»

Возраст учащихся: 8-11 класс Срок реализации программы: 1 год

Авторы-составители:

Просекин Михаил Юрьевич, руководитель компании ИнСитиЛаб, руководитель профилей «Технологии беспроводной связи» и «Интеллектуальный энергетические системы» НТО

Цивилева Дарья Михайловна, руководитель региональных программ компании Полюс-НТ, координатор профилей «Технологии беспроводной связи» и «Интеллектуальный энергетические системы» НТО

Чекан Михаил Андреевич, программист IT отдела компании Полюс-HT, разработчик профилей «Технологии беспроводной связи» и «Интеллектуальный энергетические системы» HTO

Ржечицкий Александр Эдвардович, разработчик профиля «Технологии беспроводной связи» HTO

Оглавление

1. Пояснительная записка

Актуальность программы

Цель программы

Задачи программы

Характеристика обучающихся по программе (входной уровень)

Сроки и этапы реализации программы

Ожидаемые образовательные результаты

Формы контроля и подведения итогов реализации программы

2. Учебно-тематическое планирование

Учебно-тематический план

Содержание программы

3. Условия реализации программы

4. Список информационных ресурсов

1. Пояснительная записка

Образовательная программа является частью Национальной киберфизической платформы и посвящена введению в киберфизическое приборостроение. Программа вводит обучающихся в культуру инженерного исследования, моделирования, конструирования и управления киберфизическими системами. Данная программа дополнительного образования может применяться в качестве вводного курса по формированию технической грамотности для школьников и студентов любых возрастов.

Актуальность

Беспилотная техника, автоматизированные производства, современная коммуникация, авиация и транспорт — все эти направления нуждаются в устойчивых каналах связи и новых способах управления ими. Во всех сферах жизни все большее значение приобретают киберфизические системы. Мы ими окружены, но практически не замечаем - потому что если они работают исправно и функционально, то они незаметно облегчают нашу жизнь как пользователей (системы умного дома, службы заказа такси).

Киберфизические системы объединяют множество умных устройств, работающих вместе, в рамках единой цифровой модели, что позволяет сделать жизнь и работу людей более интеллектуальной. Разработка таких систем не похожа на создание обычной программы для компьютера или на проектирование электронного прибора — необходимо уметь моделировать физическую реальность, программировать сложные адаптивные алгоритмы, создавать и тестировать распределенные в пространстве сети устройств. Для создания киберфизических систем необходимы новые средства разработки, а также новое мышление инженера. Формирование соответствующего киберфизического мышления требует специальной подготовки и способностей, способов инженерного мышления, которые необходимо формировать еще в школе. Данная образовательная программа формирует первый опыт исследования, моделирования и управления киберфизическими системами.

Цель программы

Сформировать способности к исследованию технических систем, построению моделей физической среды, моделей физических процессов, моделей технических систем и управления ими.

Задачи программы

Реализация целей программы подразумевает достижение образовательных результатов по трем направлениям – обучающих (предметных) результатов, развивающих (метапредметных) и воспитательных (личностных) результатов.

Предметные:

- освоение понятия сигнала и его характеристик;
- освоение понятия модуляция и ее видов;
- освоение понятия кодирование;
- освоение понятия распределенная киберфизическая система;
- освоение понятия киберген;
- формирование представлений о стойкости каналов к помехам и кибербезопасности, эффективности передачи данных;
- формирование представлений об инженерии киберфизических систем, связи деятельности исследования, моделирования и управления в разработке и использовании киберфизических систем;
- овладение навыками моделирования пространства с помощью исследования техническими системами,
- овладение навыками формирования и анализа сигналов, с органолептической опорой на техническую систему;
- овладение принципами кодирования,
- овладение способами создания устойчивых протоколов связи,
- овладение основами программирования расширенных иерархических машин состояний (ПРИМС);

Метапредметные:

- Формирование общих представления о способах конструирования, моделирования, программирования и управления;
- Освоение методики проведения эксперимента;
- Освоение программного управления технической системой;
- Освоение моделирования физико-технических систем;
- Обработка данных с органолептической поддержкой.

Личностные:

- развитие инженерного мышления;
- формирование навыков работы в команде;
- пробуждение сознательного отношения к получению предметных знаний,
- формирование ценности инженерной деятельности и инженерного образования;

Характеристика обучающихся (входной уровень)

Обучающимися программы могут стать подростки возраста 13 лет и старше, владеющие основами компьютерной и математической грамотности и общими представлениями об информационных системах и их использовании. Специальные знания, умения и навыки, в т.ч. в области программирования, для обучения в рамках программы не требуются.

Сроки и этапы реализации программы

Образовательная программа предполагает реализацию в течение одного полугодия. Продолжительность реализации программы — 72 акад. часа. Программа включает в себя 3 модуля: Вводный модуль (4 часа), модуль ТЮК-Акустика (32 часов), модуль ТЮК-Машины состояний (36 часов).

Ожидаемые образовательные результаты

Предметные:

- знание понятия сигнала и его характеристик;
- знание понятия модуляция и ее видов;
- знание понятия кодирование;
- знание понятия распределенная киберфизическая система;
- знание понятия киберген;
- умение моделирования пространства с помощью исследования техническими системами;
- умение формировать и анализировать сигналы;
- умение кодировать и декодировать сообщения,
- умение программировать в парадигме расширенных иерархических машин состояний (ПРИМС);
- умение работать с датчиками и актуаторами;
- умение прошивать микроконтроллеры;
- умение управлять распределенной системой.

Метапредметные:

- Формирование общих представления о способах конструирования, моделирования, программирования и управления;
- Освоение методики проведения эксперимента;
- Освоение программного управления технической системой;
- Освоение моделирования физико-технических систем;
- Обработка данных с органолептической поддержкой.

Формы контроля и подведение итогов реализации программы

В рамках образовательной программы реализуются следующие формы контроля реализации программы:

- решение задач, обсуждение предложенных решений;
- проведение инженерных соревнований;

Итоговая аттестация представляет собой участие в двух турниров юных киберфизиков, по результатам аттестации составляется региональный рейтинг.

2. Учебно-тематическое планирование

Учебно-тематический план

No			Всего, В том числе			Форма аттестации /
п/п	Разделов	час.	Л	ПЗ	СР	контроля
	Вводный модуль	4	1	3		
1.1	Навигация по программе. Вводный Турнир юных киберфизиков "Акустика"	4	1	3		
	Модуль ТЮК-Акустика	32	4	28		
1	Раздел 1. Исследования в инженерной задаче на примере распространения акустического сигнала	12	2	10	0	
1.1	Гармонический сигнал и его характеристики	4	1	3		
1.2	Передача информации в акустическом канале	4		4		
1.3	Модуляция сигнала и ее виды	4	1	3		
2	Раздел 2. Моделирование в инженерной задаче на примере работы с акустическим сигналом	4	0	4	0	
2.1	Построение модели сигнала	4		4		
3	Раздел 3. Создание протокола передачи сигнала на примере	16	2	14	0	

	работы с акустическим сигналом					
3.1	Способы кодирования и декодирования	4	2	2		
3.3	Создание сложного протокола передачи сигнала на нескольких частотах с учетом модели сигнала	8		8		
3.4	Турнир юных киберфизиков ТЮК-Акустика	4		4		Контроль в форме распределенного инженерного соревнования
	Модуль ТЮК-Машины состояний	36	6	30		
1	Раздел 1. Методы управления в технических системах	12	2	10	0	
1.1	Понятие иерархических машин состояний. События и действия в парадигме ПРИМС. Знакомство с интерфейсом IDE. Знакомство с комплектом МС-ТЮК	4	2	2		
1.2	Простейшая модель прибора. Датчики и эффекторы	4		4		
1.3	Индикация в приборах	4		4		
2	Раздел 2. Управление в распределенных системах	24	4	20	0	
2.1	Распределенная система и понятие кибергена	8	2	6		
2.2	Программные прошивки микроэлектронного контроллера.	4	1	3		

2.3.	Протокол связи распределенной системы	4		4	
2.4	Мультиэкранное программирование. Приборная среда и управление ею	4	1	3	
2.5.	Турнир юных киберфизиков МС-ТЮК	4		4	Контроль в форме работающей распределенной системы с оценкой оптимальности параметров
Ито	го:	72	11	61	

Содержание программы

№ п/п	Содержание	Контрольные задачи				
	Вводный модуль (4 ак. часа)					
Тема 1.1 Навигация по программе. Вводный турнир юных киберфизиков - знакомство учащихся с инженерными соревнованиями. Получение первого опыта работы с технической системой, на примере ТЮК-Акустика: - познакомиться с тем, что такое акустический сигнал. - научиться формировать и обрабатывать сигналы. - соревнование в декодировании сообщений.						
Модуль ТЮК-Акустика (32 ак. часа)						
Раздел 1. Исследования в инженерной задаче на примере распространения акустического сигнала (12 ак. часов)						
Тема 1.1. Гармонический сигнал и его характеристики	Знакомство учащихся с понятием физического акустического сигнала. Знакомство с гармоническим сигналом. Знакомство с уравнением гармонического сигнала. Изучение характеристик сигнала - частота, амплитуда, фаза, период.					

	Первый опыт исследования физического	
	процесса, создаваемого в физической среде,	
	и управлением технической системой.	
Тема 1.2. Передача	0	
информации в	Опыт исследования физического процесса, создаваемого в физической среде, и	
акустическом канале	управлением технической системой.	
	Знакомство с понятиями несущая и	
	огибающая. Знакомство с понятиями аналогового и цифрового сигнала,	
	знакомство с понятиями ЦАП и АЦП на	
	практике. Приемник и передатчик сигнала,	
	их характеристики. Канал связи между приемником и передатчиком в различных	
	средах – передача данных по акустическому	
	каналу	
Тема 1.3. Модуляция	Знакомство с понятием модуляции.	
сигнала и ее виды	Изучение видов модуляции - амплитудная,	
	частотная, фазовая модуляция. Получение сигнала на ТЮК-Акустика с	
	использованием разных видов модуляции	
Раздел 2. Моделирова	ние в инженерной задаче на примере раб (4 ак.часа)	боты с акустическим сигналом
	(4 ak.4aca)	
Тема 2.1. Построение	Построение модели передачи сигнала.	
модели сигнала	Поиск границы применимости модели.	
	Поиск способов модернизации технической системы.	
	Выявление понятия скорости передачи и	
	устойчивости сигнала.	
Разлел 3. Созлані	ие протокола передачи сигнала на приме	пе паботы с акустическим
,	сигналом (16 ак. часов)	
Тема 3.1. Способы	Способы кодирования и декодирования.	
кодирования и	Системы исчисления. Введение в	
декодирования	помехозащищённые коды.	
Тема 3.2. Создание	Передача данных по акустическому каналу,	
сложного протокола	подбор параметров канала, разработка	
передачи сигнала на	собственного протокола для акустического	
нескольких частотах с	канала, составление своей посылки,	
учетом молени сигиана	обработка обратной связи от	
учетом модели сигнала	обработка обратной связи от программы-декодера.	
учетом модели сигнала		

Тема 3.3. Турнир юных киберфизиков ТЮК-Акустика	Турнир с применением понятий, изученных в рамках модуля ТЮК-Акустика. Создание протокола передачи сигнала с учетом модели сигнала и граничных условий задачи турнира	Контроль в форме распределенного инженерного соревнования				
	Модуль ТЮК-Машины состояний (36 ак	. часа)				
Раздел 1. Методы управления в технических системах (12 ак. часов)						
Тема 1.1. Понятие иерархических машин состояний. События и действия в парадигме ПРИМС. Знакомство с интерфейсом IDE. Знакомство с комплектом МС-ТЮК	Понятие иерархических машин состояний. События и действия в парадигме ПРИМС. Знакомство с интерфейсом IDE. Знакомство с комплектом МС-ТЮК. Работа с пиктограммами.					
Тема 1.2. Простейшая модель прибора. Датчики и эффекторы	Формирование целостности управления прибора на основании кнопок как датчиков, светодиодов как элементов воздействия управления, и светодиодной матрицы как элементов индикации состояния прибора					
Тема 1.3. Индикация в приборах	Светодиодная матрица как элемент индикации состояния прибора					
Раздел	2. Управление в распределенных систем	ıах (24 ак.часа)				
Тема 2.1. Распределенная система и понятие кибергена	Введение понятия распределенная киберфизическая система, введение понятия Киберген					
Тема 2.2. Программные прошивки микроэлектронного контроллера.	Программная прошивка микроэлектронного контроллера. Различение шины данных и каналов для прошивки.					
Тема 2.3. Протокол связи распределенной системы	Введение понятия протокол связи распределенной системы					
Тема 2.4. Мультиэкранное программирование. Приборная среда и управление ею	Освоение первичных понятий работы с мультиэкранным программированием, распределение различных областей диаграммы машины состояний на различные части распределенной системы, образующей приборную среду. Введение понятия приборная среда и управление приборной средой как отдельными					

	областями машины состояний, с возможностью использовать части единой прошивки как самостоятельные элементы, запускающиеся на разных микроконтроллерах, расположенных на разных платах, связанных между собой информационной шиной	
Тема 2.5. Турнир юных киберфизиков МС-ТЮК	l _^	Контроль в форме работающей распределенной системы с оценкой оптимальности параметров

Итоговые контрольно-диагностические материалы (тексты заданий и критерии оценки в соответствии с предметными результатами)

Основной способ диагностики это применение полученных навыков и усвоенных понятий во время соревнований с изменением системы или управляющих и измеряемых параметров задачи.

Тип результата	Образовательный результат	Задания
Предметные результаты	 знание понятия сигнала и его характеристик; знание понятия модуляция и ее видов; знание понятия кодирование; умение моделирования пространства с помощью исследования техническими системами; умение формировать и анализировать сигналы; умение кодировать и декодировать сообщения, 	Задача на конструирование технической системы и создание протокола связи для передачи сообщения в конкретной реальной ситуации с измененными параметрами и условиями передачи. Оценивается: освоенность понятий и навыков. способность перенести навыки на другие условия и задачи способность понять как быстро возможно перестроить модель передачи сигнала под условия задачи. умение управлять технической системой с получением необходимого и измеряемого результата

- знание понятия распределенная киберфизическая система;
- знание понятия киберген;
- умение программировать в парадигме расширенных иерархических машин состояний (ПРИМС);
- умение работать с датчиками и актуаторами;
- умение прошивать микроконтроллеры;
- умение управлять распределенной системой.

Задача на конструирование и управление работающей распределенной системы с оценкой оптимальности параметров

Оценивается:

- освоенность понятий и навыков
- достижение программой управления необходимого результата;
- адекватное применение событийного подхода и расширенных иерархических машин состояний при решении задачи;
- красота и аккуратность диаграммы, лаконичность и читаемость предложенного решения;
- связь предложенной модели внешней среды и системы управления с программой, представленной диаграммой машины состояний, в т.ч. порядком наименования состояний в диаграмме;
- наличие в программе универсальных, переиспользуемых элементов;
- использование широкого набора существующих элементов при конструировании программы;
- наличие встроенной системы диагностики программы, облегчающей поиск и обнаружение ошибок.

Метапредметные результаты

- Освоение методики проведения эксперимента;
- Освоение программного управления технической системой;
- Освоение моделирования физико-технических систем;
- Обработка данных с органолептической поддержкой

Оценивается:

- Освоение методики проведения эксперимента:
 - использует ли для решения инженерной задачи исследование системы и среды
- Освоение моделирования физико-технических систем:
 - составляет ли ддя решения задачи учащийся модель технической системы, физического процесса, среды.
- Освоение программного управления технической системой:
 - формирование данных в Excel

- формирование данных
программой с использованием
языков программирования
• Обработка данных с органолептической
поддержкой
- обнаружение способов обработки
данных (в таблицах Excel, через
написание программ с
использованием языков
программирования)

Уровни освоения результата	Результат
Высокий уровень освоения	Учащиеся на соревнованиях показывают отличное практическое применение знаний и навыков.
Средний уровень освоения	Учащиеся на соревнованиях показывают практическое применение знаний и навыков, но некоторые навыки требуют доработки, а некоторые задания вызывают трудности.
Низкий уровень освоения	Учащиеся на соревнованиях показывают практическое применение знаний и навыков не соответствует требованиям и задания на соревнованиях вызывают непреодолимые трудности.

3. Условия реализации программы

Требования к преподавателю

- желание проводить программу,
- готовность работы на КПК,
- готовность работы после КП,
- готовность еженедельной связи с разработчиками программы (1 час в неделю),
- готовность работать с дополнительными диагностическими материалами,
- готовность подготовки участников к региональным соревнованиям,
- готовность вывозить участников на региональные соревнования.

Пожелания к образованию преподавателя:

- физика,
- математика,
- IT,
- инженерное образование,
- педагог физики,
- педагог математики,
- педагог информатики

Оборудование и расходные материалы

Общее оборудование:

- 1. Для реализации образовательной программы требуется компьютерный класс (не менее 1 рабочего места на 2 обучающихся) со стационарными компьютерами или ноутбуками
- 2. Проведение занятий в рамках образовательной программы потребует экрана или проектора, а также доски или флипчарта для общей работы.

Специализированное оборудование:

- 1. Комплект для проведения турниров юных киберфизиков "Акустика" 1 комплект на 2 учащихся
- 2. Комплект для проведения турниров юных киберфизиков "Машины состояний. Расширенный" 1 комплект на 3 учащихся
- 3. Набор преподавателя (приложение к ТЮК "Машины состояний") 1 на класс

4. Список информационных ресурсов

Методические разработки для преподавателя

- 1. Методические рекомендации к занятиям по темам занятий презентации и рекомендации для преподавателя
- 2. Методические материалы для учащихся описания заданий
- 3. Материалы для проведения соревнований

Список литературы для преподавателя

- 1. Книга "Код: тайный язык информатики" Чарльза Петцольда.
- 2. Необходимые основы программирования на Python.
 - а. <u>"Программирование на Python"</u> достаточная база, особое внимание урокам 3.8 и 3.9.
 - b. <u>"Программирование на Python для решения олимпиадных задач"</u> наиболее сбалансирован по глубине, особое внимание третьему модулю.
 - с. <u>"Python: основы и применение"</u> затрагивает некоторые глубокие особенности языка, но нет уроков по библиотекам обработки данных.